dataframe
typing._dataframe.DataFrame = pl.DataFrame
module-attribute
¶
Deprecated: Use OptionalDataFrame instead.
This alias is maintained for backward compatibility but OptionalDataFrame should be used for new code to be explicit about the optional nature.
Type Definition
pl.DataFrame | None
Warning
This alias may be removed in future versions. Use OptionalDataFrame for new code.
See Also
OptionalDataFrame: Preferred alternative
typing._dataframe.OptionalDataFrame = DataFrame | None
module-attribute
¶
Optional Polars DataFrame type.
Represents tabular data that may be missing or not yet initialized. DataFrames are used for structured data that doesn't fit naturally into multidimensional arrays, such as analysis results, metadata tables, or relational data.
Type Definition
pl.DataFrame | None
Typical Use Cases
- Analysis results with multiple columns
- Metadata tables with mixed data types
- Time series data with irregular intervals
- Aggregated statistics and summaries
- Relational data requiring joins and grouping
Example
Optional analysis results::
analysis: Data[OptionalDataFrame] = Data[OptionalDataFrame](
dtype=None, # DataFrames don't have numpy dtypes
meta=Metadata(
description="Statistical analysis results",
store=StoreKind.TABLE
),
default=None
)
Creating DataFrame data::
import polars as pl
results = pl.DataFrame({
'atom_id': [1, 2, 3],
'element': ['H', 'H', 'O'],
'charge': [-0.4, -0.4, -0.8],
'energy': [1.2, 1.3, -5.4]
})
ensemble.analysis = results
Conditional processing::
data = ensemble.analysis.value
if data is not None:
hydrogen_data = data.filter(pl.col('element') == 'H')
mean_energy = data['energy'].mean()
DataFrame Advantages
- Mixed data types in columns
- Efficient columnar storage
- Rich query and transformation API
- Memory efficient for sparse data
- SQL-like operations
See Also
DataFrame: Non-optional alias (deprecated, use this instead) polars.DataFrame: Polars DataFrame documentation atomea.stores.TableStore: DataFrame storage backend